

Yuanhong Zhang^{*1}, Muyao Yuan^{*1}, Weizhan Zhang^{†1}, Tieliang Gong¹, Wen Wen¹, Jiangyong Ying², Weijie Shi¹

InfoSAM: Fine-Tuning the Segment Anything Model from An **Information-Theoretic Perspective**

* Equal Contribution ¹ Xi'an Jiaotong University ² China Telecom E-surfing Vision Technology

Our Solutions

InfoSAM leverages matrix-based Rényi mutual information to (i) compress domaininvariant relations and (ii) maximize alignment between pre-trained and fine-tuned

Overview of InfoSAM • Let z_i^T / z_i^S and z_m^T / z_m^S denote the image encoder features and Prompt Image Encoder Encoder Lay mask decoder tokens from the teacher (pre-trained SAM) and Mask Decoder $X \sim D$ Z_i^T Image-Relation $I_{\alpha}(z_{i}^{T}, z_{m}^{T}; r^{T}) \leq I_{c} \implies \mathcal{L}_{r} = -log_{2} \|G_{r}^{T}\|_{F}^{2} + log_{2} \|G_{imr}^{T}\|_{F}^{2}$ feature Bottleneck Relation z_i^{S} Image- $= \log_2 \|G_r^T\|_F^2 + \log_2 \|G_r^S\|_F^2$ \checkmark Module f^{S} $-log_2 \|G_r^{TS}\|_F^2$ Mask Decoder $\max I_{\alpha}(r^{T}; r^{S}) - \beta I_{\alpha}(z_{i}^{T}, z_{m}^{T}; r^{T}) \Longrightarrow \mathcal{L}_{info} = \lambda_{1}\mathcal{L}_{r} + \lambda_{2}\mathcal{L}_{d}$ Prompt Encoder

ISIC 2017 Jac \uparrow Kvasir S_{α} \uparrow Leaf E_{ϕ} \uparrow Road IU \uparrow Road Dice \uparrow MEDICALAGRICULTUREREMOTE SENSING (S_{\alpha} (Kvasir))Jac \uparrow Dic \uparrow Dic \uparrow Dic \uparrow Dic \uparrow Dice \uparrow Dice \uparrow Dice \uparrow Dice \uparrow Sto 1.0 (12)71.4 ±0.1671.4 ±0.1677.9 ±0.1737.6 ±0.1147.0 ±0.1672.2 ±0.2447.6 ±0.2764.1 ±0.4737.7 ±0.1493.2 ±0.0892.5 ±0.1296.3 ±0.0269.2 ±0.6780.3 ±0.6858.1 ±0.0673.1 ±0.0673.1 ±0.0637.8 ±0.2493.4 ±0.1297.1 ±0.1577.5 ±0.1174.4 ±0.1684.3 ±0.0259.0 ±0.1774.6 ±0.1774.4 ±0.1661.0 (+0.5)37.8 ±0.4993.2 ±0.0893.4 ±0.1297.1 ±0.1575.4 ±0.1270.6 ±0.1360.2 ±0.2774.8 ±0.2237.7 ±0.2393.2 ±0.0193.4 ±0.0297.5 ±0.0566.2 ±0.4777.8 ±0.0359.5 ±0.5766.2 ±0.4777.8 ±0.2337.7 ±0.2393.2 ±0.0193.4 ±0.0297.5 ±0.0574.6 ±0.1774.4 ±0.0574.4 ±0.2274.4 ±0.2237.7 ±0.2393.2 ±0.0193.4 ±0.0297.5 ±0.0574.6 ±0.1775.6 ±0.2774.8 ±0.2237.7 ±0.2393.2 ±0.0194.4 ±0.1274.4 ±0.2274.4 ±0.2261.4 ±0.3037.4 ±0.4593.4 ±0.0297.5 ±0.0574.6 ±0.1774.4 ±0.2274.6 ±0.2237.4 ±0.4593.4 ±0.0893.4 ±0.0893.4 ±0.0275.6 ±0.3074.6 ±0.1737.4 ±0.4593.4 ±0.0994.4 ±0.1275.6 ±0.27<		MEDICAL				AGRICULTURE		REMOTE	SENSING				study fe	Suit		IOSSES
$\frac{51.0 \pm 0.12}{55.9 \pm 0.3} \frac{71.7 \pm 0.14}{92.2 \pm 0.02} \frac{71.4 \pm 0.16}{93.2 \pm 0.03} \frac{77.9 \pm 0.17}{95.5 \pm 0.11} \frac{77.9 \pm 0.17}{55.6 \pm 1.12} \frac{77.9 \pm 0.17}{55.6 \pm 0.12} \frac{77.9 \pm 0.17}{55.6 \pm 0.11} \frac{77.9 \pm 0.17}{55.6 \pm 0.11} \frac{77.2 \pm 0.24}{55.6 \pm 0.11} \frac{77.2 \pm 0.24}{55.6 \pm 0.11} \frac{77.2 \pm 0.24}{55.6 \pm 0.11} \frac{77.4 \pm 0.15}{55.6 \pm 0.11} \frac{57.5 \pm 0.02}{55.6 \pm 0.11} \frac{77.4 \pm 0.14}{55.6 \pm 0.17} \frac{57.5 \pm 0.02}{55.6 \pm 0.17} \frac{77.4 \pm 0.14}{55.6 \pm 0.17} \frac{54.9 \pm 0.16}{55.6 \pm 0.17} \frac{77.4 \pm 0.14}{55.6 \pm 0.27} \frac{54.9 \pm 0.16}{55.6 \pm 0.27} \frac{77.4 \pm 0.16}{55.6 \pm 0.27} \frac{54.9 \pm 0.16}{55.6 \pm 0.27} \frac{74.6 \pm 0.17}{55.6 \pm 0.27} \frac{75.6 \pm 0.27}{55.6 \pm 0.27} \frac{74.6 \pm 0.17}{55.6 \pm 0.27} \frac{75.6 \pm 0.27}{55.6 \pm 0.27} \frac{74.6 \pm 0.17}{55.6 \pm 0.27} \frac{75.6 \pm 0.27}{55.6 \pm 0.27} \frac{74.6 \pm 0.17}{55.6 \pm 0.27} \frac{75.6 \pm 0.27}{55.6 \pm 0.27} \frac{74.6 \pm 0.17}{55.6 \pm 0.27} \frac{75.6 \pm 0.27}{55.6 \pm 0.27} \frac{74.6 \pm 0.17}{55.6 \pm 0.27} \frac{75.6 \pm 0.27}{55.6 \pm 0.27} \frac{74.6 \pm 0.17}{55.6 \pm 0.27} \frac{75.6 \pm 0.27}{55.6 \pm 0.27} \frac{75.6 \pm 0.27}{55.6 \pm 0.27} \frac{74.6 \pm 0.17}{55.6 \pm 0.27} \frac{75.6 \pm 0.27}{55.6 \pm 0.27} \frac$		ISIC 201 Jac↑	17 Dice↑	$S_{\alpha} \uparrow$	$E_{\phi} \uparrow$	Le IoU↑	eaf Dice ↑	Roa IoU↑	ıd Dice↑		L_r	L_d	$\frac{MEDIC}{S_{\infty} (Kv)}$	asir)	AGRICULTURE	IoU (Road
$\frac{174 \pm 014}{564 \pm 024} \frac{93.2\pm 0.08}{93.3\pm 0.08} \frac{92.5\pm 0.12}{93.3\pm 0.08} \frac{96.3\pm 0.20}{93.3\pm 0.08} \frac{99.2\pm 0.07}{75.0\pm 0.21} \frac{80.3\pm 0.08}{71.4\pm 0.06} \frac{73.1\pm 0.06}{71.4\pm 0.06} \frac{73.1\pm 0.06}{73.4\pm 0.12} \frac{73.0\pm 0.07}{74.4\pm 0.12} \frac{73.0\pm 0.08}{71.4\pm 0.06} \frac{73.1\pm 0.06}{74.2\pm 0.21} \frac{50.2\pm 0.07}{74.4\pm 0.12} \frac{50.2\pm 0.07}{74.4\pm 0.21} \frac{50.2\pm 0.07}{74.4\pm 0.21} \frac{50.2\pm 0.07}{74.4\pm 0.21} \frac{50.2\pm 0.07}{74.4\pm 0.22} \frac{74.4\pm 0.07}{75.6\pm 0.27} \frac{75.6\pm 0.27}{75.6\pm 0.27} \frac{75.6\pm 0.27}{75.6\pm 0.27} \frac{75.6\pm 0.27}{75.6\pm 0.27} \frac{75.6\pm 0.27}{75.6\pm 0.27} \frac{75.6\pm 0.30}{75.6\pm 0.27} \frac{75.6\pm 0.30}{75.6\pm 0.27} \frac{10.00}{75.6\pm 0.27} \frac{10.00}{75.6\pm$	1	$.0_{\pm 0.12}$ 71 $.9_{\pm 0.34}$ 92	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$1.4_{\pm 0.16}$ $0.9_{\pm 0.05}$	$77.9_{\pm 0.17}$ $95.2_{\pm 0.18}$	$\begin{vmatrix} 37.6_{\pm 0.11} \\ 55.6_{\pm 1.12} \end{vmatrix}$	$47.0_{\pm 0.16}$ $68.8_{\pm 1.17}$	$\begin{array}{ c c c c } 7.2_{\pm 0.24} \\ 47.6_{\pm 0.47} \\ \hline \end{array}$	${}^{12.9 \pm 0.29}_{64.1 \pm 0.47}$				93.4 93.6 (+	(0.2)	74.4 75.2 (±0.8)	60.5 61.0 (+0.5
$\frac{363 \pm 0.32}{37.8 \pm 0.18} = \frac{92.4 \pm 0.19}{93.8 \pm 0.02} = \frac{95.5 \pm 0.57}{93.2 \pm 0.11} = \frac{66.2 \pm 0.44}{92.9 \pm 0.13} = \frac{77.8 \pm 0.43}{74.7 \pm 0.53} = \frac{54.9 \pm 0.16}{74.7 \pm 0.53} = \frac{70.6 \pm 0.17}{74.4 \pm 0.20} = \frac{77.8 \pm 0.44}{59.4 \pm 0.20} = \frac{54.9 \pm 0.16}{74.7 \pm 0.53} = \frac{74.4 \pm 0.22}{59.6 \pm 0.27} = \frac{74.4 \pm 0.22}{59.6 \pm 0.27} = \frac{74.4 \pm 0.20}{75.6 \pm 0.27} = \frac{75.6 \pm 0.30}{75.6 \pm 0.27} = \frac{75.6 \pm 0.30}{1100} = \frac{75.4 \pm 0.44}{10.45} = \frac{75.4 \pm 0.44}{10.4$	8 8 8	7 ± 0.14 93 1.6 ± 0.24 93 1.8 ± 0.24 93 1.7 ± 0.23 93	$\begin{array}{c cccc} 0.2 \pm 0.08 & 9 \\ 3.2 \pm 0.15 & 9 \\ 3.3 \pm 0.13 & 9 \\ 3.2 \pm 0.16 & 9 \end{array}$	0.5 ± 0.12 0.33 ± 0.68 0.03 ± 0.14 $0.03.4 \pm 0.12$	96.3 ± 0.20 97.0 ± 0.81 96.6 ± 0.11 97.1 ± 0.15	$\begin{array}{c} 69.2 \pm 0.67 \\ 75.0 \pm 0.11 \\ 71.4 \pm 0.54 \\ 74.4 \pm 0.16 \end{array}$	$80.3 \pm 0.68 \\ 84.8 \pm 0.08 \\ 82.1 \pm 0.62 \\ 84.3 \pm 0.28$	$\begin{array}{c} 58.1 \pm 0.06 \\ 61.1 \pm 0.15 \\ 59.0 \pm 0.19 \\ 60.5 \pm 0.10 \end{array}$	75.1 ± 0.06 75.5 ± 0.12 74.0 ± 0.17 75.1 ± 0.08		√ Tron	ofor	94.4 (+	$\frac{1.0}{1.0}$	75.6 (+1.2)	61.4 (+0.9)
$\frac{8.1 \pm 0.08}{8.0 \pm 0.05} \frac{93.5 \pm 0.05}{93.4 \pm 0.00} \begin{vmatrix} 93.4 \pm 0.11 \\ 94.4 \pm 0.12 \end{vmatrix} \frac{96.8 \pm 0.09}{75.6 \pm 0.27} \frac{72.2 \pm 0.06}{85.2 \pm 0.23} \frac{82.8 \pm 0.04}{61.4 \pm 0.30} \frac{59.9 \pm 0.20}{75.8 \pm 0.27} \frac{74.6 \pm 0.17}{75.8 \pm 0.27} = \frac{RM FROM}{S_{\alpha} (Kvasir)} \frac{S_{\alpha} (Kvasir)}{IoU (Leaf)}$ $\frac{InfoSAM}{InfoSAM-T} \frac{94.4 \pm 0.12}{Leaf} = \frac{93.7 \pm 0.24}{93.7 \pm 0.24} = \frac{75.6 \pm 0.30}{100}$ $\frac{InfoSAM}{InfoSAM-T} \frac{75.6 \pm 0.30}{InfoSAM-T} \frac{75.4 \pm 0.30}{InfoSAM-T} \frac{75.4 \pm 0.30}{InfoSAM-T} \frac{75.4 \pm 0.45}{InfoSAM}$	($ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c} 2.4_{\pm 0.19} & 9\\ 3.2_{\pm 0.09} & 9\\ 3.2_{\pm 0.11} & 9\end{array}$	01.1 ± 0.50 03.8 ± 0.02 02.9 ± 0.13	$\begin{array}{c} 95.5 \pm 0.57 \\ 97.5 \pm 0.06 \\ 96.6 \pm 0.28 \end{array}$	$\begin{vmatrix} 66.2 \pm 0.44 \\ 74.7 \pm 0.53 \\ 71.4 \pm 0.44 \end{vmatrix}$	$77.8 \pm 0.43 \\ 84.5 \pm 0.56 \\ 82.2 \pm 0.37$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} 70.6 \pm 0.13 \\ 74.8 \pm 0.22 \\ 74.4 \pm 0.20 \end{array}$				FROZEN	Меі	DICAL AGF	
early to late epochs	38	$3.1_{\pm 0.08}$ 93 $3.0_{\pm 0.05}$ 93	$3.5_{\pm 0.05}$ 9 $3.4_{\pm 0.00}$ 9	$03.4_{\pm 0.11}$	$96.8_{\pm 0.09}$ $97.9_{\pm 0.09}$	72.2 ± 0.06 75.6 + 0.27	$82.8_{\pm 0.04}$ $85.2_{\pm 0.23}$	59.9 ± 0.20 61.4 + 0.30	$74.6_{\pm 0.17}$ $75.8_{\pm 0.27}$			пор	RM FROM	$\overline{S_{\alpha}}$ (1	Kvasir) Ic	U (Leaf)
early to late epochs > Visualization results on camouflaged object segmentation	-										InfoS InfoS InfoS InfoS	SAM SAM-T SAM SAM-T	- Leaf - Kvasir	94.4 93.7	± 0.12 ± 0.24 - 7 - 7	$5.6_{\pm 0.30}$ $5.4_{\pm 0.45}$
		early	to lat	e epo	ochs					tion	resu	lts o	n camou	ıflag	jed objec	ct segmer

天翼视联

SAM

HQSAM

SU-SAM

ConvLoRA-SAM

InfoSAM